
Towards Orchestrating Game Creativity Facets:
A Case Study Fusing Audio, Visuals and

Gameplay

Omitted for Anonymous Review

Omitted for Anonymous Review

Abstract. Computer games are unique creativity domains in that they
elegantly fuse several facets of creative work including visuals, narra-
tive, music, architecture and design. While the exploration of possibil-
ities across facets of creativity offers a more realistic approach to the
game design process, most existing autonomous (or semi-autonomous)
game content generators focus on the mere generation of single domains
(creativity facets) in games. Motivated by the sparse literature on mul-
tifaceted game content generation, this paper introduces a multifaceted
procedural content generation (PCG) approach that is based on the in-
teractive evolution of multiple artificial neural networks that orchestrate
the generation of visuals, audio and gameplay. The approach is evaluated
on a spaceship shooter game. The generated artifacts — a fusion of audio-
visual and gameplay elements — showcase the capacity of multifaceted
PCG and its evident potential for computational game creativity.

1 Introduction

Computer games are creative domains of multiple facets including audio, visuals,
gameplay, narrative, level architecture and game design [7]. For the vast major-
ity of game genres the interplay between audio (e.g. character themes, sound
effects, foreshadowing) and visuals (e.g. object and level design) is of critical
importance for the creative expression of game designers and, ultimately, for the
immersion of players via gameplay [7]. As nonlinear games surge in popularity,
game composers and designers are increasingly challenged to design a meaningful
player experience for players who are dynamically constructing their own game
experiences. While traditional composers and designers are adapting to this new
practice [2] approaches for procedurally generating assets for games are emerging
to enhance game personalization, increase game replayability and alleviate some
of the additional demands on designers, musicians, and artists [13].

Procedural content generation (PCG) methods as employed in games have
traditionally been used to either fully automate aspects game development such
as asset creation or as assistive authoring tools for designers [16]. The dominant
focus of PCG until recently has been on generating single game creativity facets
(domains) — such as visuals or levels — into the standard game development
pipeline [14] with a few notable exceptions [3, 10].



In this paper, instead, we introduce a multifaceted PCG approach for the
simultaneous generation of audio, visuals and gameplay. The generation of the
game domains is multifaceted in that the creation process on one domain in-
forms and is informed by the creation process on the others. Our approach relies
on implicit interactive evolution [13] where human input (gameplay) determines
the fitness of the generated artifacts: in our case the fusion of audio, visuals
and gameplay. Both audio and visuals are represented by compositional pat-
terns producing networks (CPPNs) [11] which co-evolve throughout gameplay
(i.e. real-time) and are both interlinked with gameplay. The proposed method-
ology is tested in the AudioInSpace game, a spaceship shooting game, where
both weapons trajectories (gameplay, visuals), their color (visuals) and their
sounds effects (audio) are orchestrated and interlinked with (and affected by)
the gameplay.

2 Background

While there are many approaches to procedurally generating content or facets for
video games (e.g. visuals, audio, narrative, game design, level design and game-
play), the focus is often on the single facet rather than how they can combine
to create a complete game experience. For instance, world maps in Civilization
V (Firaxis 2010), dungeons in Diablo (Blizzard 1996), racing tracks [12], petal
colors and shapes in Petalz [9], and weapons in Borderlands (Gearbox 2009) are
all procedurally generated to provide the player with increased personalization
and replayabity. Simiarly, Audiosurf [8] generates visual game play elements de-
pending on the sound file provided by the player. While these generated elements
may increase replayability and alleviate the art and design requirements on de-
velopers, these approaches serve as means to an end rather than celebrating the
creativity of procedural content generation itself.

Other approaches aim to interweave procedurally generated elements to en-
hance the game experience. For instance, Galactic Arms Race [5] encourages
players to interactively evolve weapon visuals and bullet trajectories to their
aesthetic and gameplay preferences, while Game-o-matic [15] helps players visu-
ally construct the topic of their game and then procedurally generates the rules
and visuals. Similarly, A Rogue Dream [3] is 2D maze game that gathers and
parses internet data to discover relationships between natural language concepts
and create game facets from them, challenging players to interpret the designer’s
intent on topics like religion or politics. While Proteus [? ] is a completely proce-
durally generated pixel-art world where users can spatially and sonically explore
their environments, the sonic output does not affect the previously generated
landscapes. Even in these integrated environments, the output of one procedu-
rally generated facet has little affect on the other.

While integrating procedurally generated game facets is a growing trend,
few investigate bidirectional communication between elements. One notable ex-
ception is AudioOverdrive, a side-scrolling space shooter where players compose
music by progressing through the game. It has bidirectional communication be-



tween enemies, gameplay, and level visuals [6], but the approach requires heavy
human initiative by the developers.

The approach in this paper is to extend the ideas of Audiooverdrive to create
an environment where the visuals and audio are closely coupled with minimal
interference from the developers. AudioInSpace attempts to orchestrate the gen-
eration of audio, visuals and gameplay: in the testbed space shooter game, the
appearance of the spaceship’s weapons (e.g. color) and their gameplay effects
(e.g. whether it hit an enemy) affect the game’s soundtrack; the soundtrack in
turn affects the firing rate, color and movement patterns of the weapon’s parti-
cles, thus ensuring a bidirectional communication across creative facets. While
similar to AudioOverdrive in terms of goals, theme and creative game facets
tackled, AudioInSpace specifically uses information on the spaceship’s gameplay
behavior and on-screen visuals rather than treating gameplay events such as
firing a weapon solely on account of its sound effect.

3 Approach

While many approaches to generating content create singular game facets to
augment the developers’ creativity, the approach in this paper is to explore
mixed initiative co-creativity, where the machine and player combine to create
an augment the other’s experience. The machine’s creativity is enhanced through
a conceptual blending of the audio and visual modules in figure 1. Here, audio
inputs are sent to the visual module, which are looped back to inputs for the
audio. Players exercise their own creativity when deciding which weapons and
audio to select. Because it is fundamental for the individual audio and visual
domains to interact, each PCG module bases decisions on information gathered
from both domains. Together, the machine and the player create an experience
unique for each player.

These relationships between the domains and generated outputs are repre-
sented by a special type of artificial neural network (ANN) called a composi-
tional pattern producing network (CPPN; shown in figure 2) [11]. Like tradi-
tional ANNs, each CPPN is an interconnected network of nodes and connection
weights that when provided input, calculate an output value. However, unlike
traditional ANNs that only compute sigmoid functions at the hidden nodes,
CPPNs can compute any function (e.g. Gaussian, sigmoid, sine, ramp etc.), in
effect making the CPPN a pattern generator biased toward certain regularities.
Through this representation, the aim is that each

Each PCG module is represented by a separate CPPN that inputs domain
information and outputs instructions for generating either audio or visual pat-
terns that not only affect player immersion but also gameplay. To personalize the
relationship between music, visuals, and gameplay, these CPPNs can be evolved
through a process similar to animal breeding called interactive evolutionary com-
putation (IEC), wherein the human use rather than an explicit fitness function
rates candidate individuals. CPPNs are evolved through the NeuroEvolution of
Augmenting Topologies (NEAT; ? ) algorithm which was originally developed to



Fig. 1. In AudioInSapce, audio and weapon visuals are represented by two separate
modules that each provide relevant domain information to the other (i.e. the visual
module is not only informed by current visual elements in the level, but also by the
concurrently generated audio and vice versa).

Bias Input 1 Input 2

Outputs

Inputs

Fig. 2. Compositional pattern producing networks (CPPNs; 11) are an interconnected
network of nodes with inputs, hidden nodes, and outputs that can theoretically compute
any function[4]. They are a special type of artificial neural network (ANN) wherein
hidden nodes can compute activation functions beyond the typical sigmoid restrictions.
By allowing the hidden nodes to compute Gaussian, Sine, and other functions, resulting
patterns can be biased toward producing particular regularities.



solve control and decision tasks but generates sound and visuals in this paper.
Through (NEAT), each CPPN can start minimally and complexify as necessary
over evolutionary time. By adding hidden nodes and connections, and chang-
ing activation functions and weight values, each new individual can expand the
relationship between inputs and hidden nodes.

3.1 Game

This mixed initiative design is presented through a space shooter, called Au-
dioInSpace, which extends approaches by Hastings et al. [5] for weapon particle
generation by adding musical inputs to the CPPN. Shown in figure 3, the player
moves through levels in an outerspace environment attempting to avoid obsta-
cles and shoot enemies while simultaneously evolving weapon trajectories and
visuals with the generated accompanying audio. By directing the two CPPNs to
create patterns from information gathered from both domains, this approach is
one of the first to incorporate mixed-initiative co-creativity while combining two
different PCG modules.

Fig. 3. AudioInSpace. In AudioInSpace, the user controls the space ship on the left
side of the screen while moving through each space level. The health of the ship is
shown at the top of the screen as “hull strength” while the weapon score is displayed
at the bottom. Two mirrored visual beams project from the player’s spaceship shooting
patterns directed by the current visual CPPN. The rate of fire and the pitches heard
result from the audio CPPN’s Pitch and DeltaTime outputs.

Upon launch, the colors and trajectory of the first bullet are calculated when
a random note from the C Major pentatonic scale is played and input to the



(a) Weapon CPPN (b) Audio CPPN

Fig. 4. CPPNs for AudioInSpace

visual CPPN in figure 4a. Together with the pitch information from the initially
random MIDI note, this CPPN also inputs the (δx, δy) position between where
the bullet was fired and where it is currently located with respect to where it
was fired, and the time t since firing. Note that before the bullet is fired, the
initial (δx, δy) = (0, 0) and t = 0. Outputs of the visual CPPN determine the
red, green, and blue (RGB) color values for each bullet, and the (x′, y′) outputs
dictate the bullet’s new position (i.e. its trajectory). The color and trajectory of
each bullet is calculated every time that a new note sounds.

New notes are fired when the bullet hits an enemy or otherwise at the end
of the current note’s duration. Shown in figure 4b, the music CPPN determines
pitch and a notes duration through the respective Pitch and DeltaTime outputs.
These values are based on the (x, y) position of where the last bullet was fired,
time since firing t, whether the bullet struck an enemy h, and its RGB values.

As the game progresses, the player moves through different levels encounter-
ing obstacles and hostile enemies. large rocks to avoid, and small rocks to avoid
and shoot, preference ratings are given to weapons for every bullet fired and the
audio CPPNs fitness is increased for every new note. The longer each weapon
and audio network are in play, the higher that CPPN is rated. It is assumed
that the longer weapons and visuals are in play, the more preferable they are to
a particular player. Therefore through IEC players evolve the visual and audio
networks toward their aesthetic preferences.

4 Experiments

Experiments in this section illustrate the potential power of this proof-of-concept
by exploring the interactions and effects of the model. In the first experiment,
inputs to each CPPN are simplified to examine their impact on the alternate
CPPN. To illustrate the effects of the MIDI on the visual CPPN, rather than
generate MIDI notes from the CPPN, they are hard coded and the resulting
weapon visuals are observed. Both a constant MIDI value and scaling MIDI notes



between MIDI values 20 and 90 are input to the visual CPPN. The simplified
visual network obtained by restricting the MIDI input to a single note is then
loaded back into the game where the musical CPPNs are evolved without input
to the visual CPPN. Then, in this way, the relationship between audio and
visuals can be more thoroughly investigated.

The second experiment explores the complete interaction between the two
networks when evolved by players. In these experiments, a note in the pentatonic
C major scale is sent to the visual network. The visuals are then generated in
loop with the MIDI notes.

In each of the experiments, tournament selection occurs amongst a popu-
lation of fifty individuals, ten of which are rated by the player through IEC.
Players can switch the current weapon or audio representation by pressing a
button to activate a different CPPN chromosome whose effects are immediately
heard and seen in AudioInSpace. The evolutionary parameters are set through
preliminary testing, and the probability of adding a new node or connection is
30% and 15% respectively. Similarly, the activation functions at any node can be
replaced by one of the following with an even chance: Hidden Node Functions:
Sigmoid, Hyperbolic Tangent, Sine, Cosine, Bipolar Sigmoid, Gaussian, Ramp,
Step, Spike [5]. However, the activation function of any particular node is only
changed with a 20% chance. Weights mutated with a 90% chance real values
between [−2, 2]. Occasionally (1% chance), connections are disabled.

5 Results

Videos of the results in this section are available at http://music-ai.org/musicgame/.
The first set of results explores the combination of visual and audio CPPNs by
first examining the weapons with a predetermined MIDI pattern. MIDI note 67,
or G, is input to the visual network in eighth note quantization. As shown in fig-
ure 5 and accompanying video, visuals generated from this single repeated note
create a constant visual stream with a predictable trajectory dictated by the re-
peated eighth note inputs. Each visual CPPN has four inputs, five outputs, and
in this result, which was evolved in fifty generations, also has six hidden nodes
as shown previously in figure 4a. However, because these weapons are patterns
created by human evolved CPPNs, many different colors and trajectory shapes
are possible, illustrated additional examples on the website.

Once the audio CPPN is evolved by the player for the same weapon CPPN,
the bullets still maintain much of the blue color present in figure 5a, but as
shown in figure 5b also start shooting red colored bullets throughout the level
progression. While the trajectory in a forms (a) predictable repetitive pattern,
because (b) depends on the evolved MIDI network, the trajectory can deviate
more from this path. In fact, with this MIDI network, the bullets are fired with
a slightly backwards trajectory that at times allows users to build posterior
bullet defenses against potential upcoming enemies. In this way, players can
simultaneously evolve networks suited for their individual game experiences.



(a) Weapon with Repeated Single Eighth Note

(b) Weapon with Repeated Variable Eighth Note

Fig. 5. Evolved Weapon with Repeated and Variable Notes While the weapon
in (a) maintains a steady trajectory due to the repeated eighth note input, the same
weapon in (b) deviates in bullet timing, color, and trajectory once the MIDI network
is evolved, thereby illustrating the influence of the MIDI CPPN.



Fig. 6. Ascending and Descending Pitches When ascending and descending notes
between MIDI values 20-90 are sent to this weapon network, the smooth transi-
tions between colors and trajectories are evident. Video is available at http://music-
ai.org/musicgame/.

Figure 6 represents a weapon that where instead of inputting the same note,
instead MIDI values between 20-90 are input in ascending and descending order.
Over time, the overall trajectory shape is maintained, but the length between
bullet streams increases and decreases according to the MIDI input.

Videos of the complete system interaction are available at at http://music-
ai.org/musicgame/ where the player cycles through several different weapons
and MIDI CPPNs.

6 Discussion and Future Work

While this paper is a proof-of-concept about fusing game and player creativity,
it is important that players enjoy this new mixed-initiave experience. Future
work aims to explore players’ appreciation of the visuals, audio, and game play,
and whether the mixed-initiative interaction enhances the overall experience.
The question is whether players prefer the sound of the additional audio and the
control that it provides over the weapon visuals. AudioInSpace will be play tested
with the work by Cachia et al. [1] as a control, examining average game time,
perceived enjoyment, generations per audio and visual CPPNs, and complexity
of the relationships between inputs and outputs of each CPPN.

While it is currently assumed that the number of times a gun is fired and the
length of time an audio network is heard reflect player preference, another inter-
esting question is why players choose certain weapons and audio. For example,
do players focus more on the look of the weapon or the rate of fire determined



by the audio? Answers to these questions could help identify player styles and
optimize potential development areas.

However, there are also many different avenues for increasing the quality
of the visuals and audio, and the cooperation between the two. Like Galactic
Arms Race for instance, the initial generation of weapon and audio CPPNs could
be preselected for quality and gameplay. Furthermore, more constraints on the
audio output (e.g. restriction to key) could enhance the sound of the output. An-
other interesting area of research is in adding “listeners” to generated audio and
spawning monsters depending on the pitches and durations of note patterns. For
instance, when low pitched long notes play, a larger more important and diffi-
cult boss could appear, whereas higher pitched notes could signal intermittently
approaching comets.

7 Conclusion

This paper presented a mixed initiative co-creative goal for developers and play-
ers. Through a space shooter called AudioInSpace, players evolve their own
weapons and audio to suit their aesthetic tastes and tactical demands of the cur-
rent level. Results from this proof-of-concept game illustrate that a significant
impact is made on the visuals when combined with simultaneously generated
audio patterns. While these results are encouraging, there is room to improve
the overall interaction between the player and the game and the generated audio.
However, these results offer a promising new approach to fully integrating PCG
modules in other games.

8 Acknowledgements

[Omitted for anonymous review]



References

[1] William Cachia, Luke Aquilina, Hector P. Martinez, and Georgios N. Yan-
nakakis. Procedural generation of music-guided weapons. In Proceedings
of the IEEE Conference on Computational Intelligence and Games (CIG),
page TODO.

[2] Karen Collins. An introduction to procedural music in video games. Con-
temporary Music Review, 28(1):5–15, 2009.

[3] Michael Cook and Simon Colton. A rogue dream: Automatically generating
meaningful content for games. In Proceedings of the AIIDE Workshop on
Experimental AI and Games, 2014.

[4] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4):303–314, 1989.

[5] Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley. Automatic
content generation in the galactic arms race video game. IEEE Transactions
on Computational Intelligence and AI in Games, 1(4):245–263, 2009.

[6] Nils Iver Holtar, Mark J. Nelson, and Julian Togelius. Audioverdrive: Ex-
ploring bidirectional communication between music and gameplay. In Pro-
ceedings of the 2013 International Computer Music Conference, 2013.

[7] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. Computa-
tional game creativity. In Proceedings of the Fifth International Conference
on Computational Creativity, 2014.

[8] Audio Surf LLC. Audiosurf. www.audio-surf.com, 2011.
[9] Sebastian Risi, Joel Lehman, David D’Ambrosio, Ryan Hall, and Ken-

neth O. Stanley. Combining search-based procedural content generation
and social gaming in the petalz video game. In Proceedings of Artificial
Intelligence and Interactive Digital Entertainment Conference, 2012.

[10] Marco Scirea. Mood dependent music generator. In Dennis Reidsma,
Haruhiro Katayose, and Anton Nijholt, editors, Advances in Computer En-
tertainment, volume 8253 of Lecture Notes in Computer Science, pages 626–
629. Springer International Publishing, 2013.

[11] Kenneth O. Stanley. Compositional pattern producing networks: A novel
abstraction of development. Genetic Programming and Evolvable Machines
Special Issue on Developmental Systems, 8(2):131–162, 2007.

[12] Julian Togelius, R De Nardi, and Simon M. Lucas. Towards automatic per-
sonalised content creation for racing games. In Proceedings of IEEE Sym-
posium on Computational Intelligence and Games, pages 252–259. IEEE,
2007.

[13] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. Search-based procedural content generation: A taxonomy and sur-
vey. IEEE Transactions on Computational Intelligence and AI in Games,
3(3):172–186, 2011.

[14] Julian Togelius, Noor Shaker, and Mark J. Nelson. Introduction. In Noor
Shaker, Julian Togelius, and Mark J. Nelson, editors, Procedural Content



Generation in Games: A Textbook and an Overview of Current Research.
Springer, 2014.

[15] Mike Treanor, Bryan Blackford, Michael Mateas, and Ian Bogost. Game-
o-matic: Generating videogames that represent ideas. In Proceedings of the
FDG Workshop on Procedural Content Generation, 2012.

[16] Geogios N. Yannakakis. Game ai revisited. In Proceedings of the 9th con-
ference on Computing Frontiers, pages 285–292, 2012.


